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Two methods for performing stellarator expansion, or average method, MHD calculations 
are described. The first method includes the calculation of vacuum, equilibrium, and stability 
using the Greene and Johnson stellarator expansion in which the equilibrium is reduced to a 
two-dimensional problem by averaging over the geometric toroidal angle in real space coor- 
dinates. In the second method, the average is performed in a system of vacuum magnetic coor- 
dinates. Both methods are implemented to utilize realistic vacuum field information, making 
them applicable to configuration studies and machine design as well as to basic research. 
Illustrative examples are presented to detail the sensitivities of the calculations to physical 
parameters, to show numerical convergence, and to show the comparison of these methods 
with each other and with other methods. @?I 1986 Academic Press, Inc. 

1. INTRODUCTION 

There has been a renewal of interest in the stellarator concept in recent years 
largely because of its potential to provide a steady-state, zero net current fusion 
device. This interest was triggered by several stellarator experiments and has been 
accompanied by a proliferation of theoretical and computational research. In the 
area of MHD much effort has been spent on the formulation and development of 
computational techniques to solve the formidable three-dimensional stellarator 
equilibrium problem [ 141. Because MHD studies for 2-D systems are simpler and 
faster than for 3-D systems, the stellarator expansion [S], or average method 
[6, 71, has also become an important approach to theoretical and computational 
MHD in stellarators [7-161. This method is derived from an ordering scheme in 
which the ratio of the helically varying magnetic field to the average toroidal field is 
taken to be first order in a small parameter 6. While it is possible to consider 
various orderings between the dimensionless parameters N, j?, E, and 6, it is 
assumed here that l/N - /? - E - a2 where N is the number of field periods, E is the 
inverse aspect ratio, and /? the plasma beta. This ordering reduces the three-dimen- 
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sional stellarator equilibrium problem to the solution of a two-dimensional 
Grad-Shafranov-type equation, while stability is incorporated by retaining the 
leading order terms in the expansion of the MHD equations [S, 12, 133. 
Equilibrium and stability calculations using the stellarator expansion are similar 
computationally to those for tokamaks, in which two-dimensional equilibria are 
employed. The main difference comes from the existence of a vacuum transform and 
the average helical curvature effect. With the experience of tokamak equilibrium 
and stability [17-201 as a guide, the development of computationally efficient 
stellarator expansion computer codes has been straightforward. Although the 
mathematical progression from tokamak to stellarator expansion models is 
straightforward, the spectrum of instabilities for the two configurations is quite dif- 
ferent, as illustrated, for example, by the increased importance of the interchange 
modes in stellarators. 

In previous applications, the stellarator expansion has been shown to give 
equilibria in good agreement with three dimensional calculations for moderate and 
large aspect-ratio planar-axis systems [ 13, 15,211. Such systems include 
Heliotron-E, Wendelstein VII-A, CLEO, and ATF. The validity of stellarator 
expansion stability calculations for such devices is supported by experimental 
results from Heliotron-E, which exhibit instability at the predicted fi [22]. A 
variation of the average method in which the “toroidal” average is performed in 
vacuum magnetic coordinates allows the treatment of helical axis systems, as long 
as toroidal effects are strong, and permits the incorporation of the vacuum field in 
an exact way. Equilibrium calculations using this method are in excellent agreement 
with three-dimensional calculations for a variety of cases [ 151. 

We will concentrate in this paper on numerical aspects of two average-method 
approaches: a fixed boundary equilibrium and stability calculation using the 
“classical’ average method in geometric toroidal angle, and a flux coordinate 
average method in which the average is carried out in vacuum magnetic coor- 
dinates. Detailed comparisons of the equilibrium and stability results of these and 
other methods [l-4, 11, 12, 163 have been presented in other publications (3, 13, 
15, 213. In this paper the two numerical methods are described, and numerical con- 
vergence studies are presented. The vacuum field calculation will be described in 
Section 2, while in Section 3 the equilibrium calculations will be discussed and com- 
pared. The stability calculations will be considered in Section 4, and Section 5 will 
contain a summary. 

2. CALCULATION OF THE VACUUM MAGNETIC FIELDS 

In the stellarator configuration, external conductors generate the largest part of 
the magnetic field, both in the toroidal and poloidal directions. MHD equilibrium 
and stability properties can be quite sensitive to changes in these vacuum fields. To 
assess these properties for a given external coil system, it is necessary to calculate 
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the fields due to the currents in the coils accurately. In the region of the plasma, 
these vacuum fields satisfy 

V x B’“” = 0, (1) 

and 

V . Bvac = 0. (2) 

Given the external coil configuration and currents it is possible to calculate the 
magnetic field at location r using the Biot-Savart formula 

Bvac(r)= \ Jc(rc)x(r-rr,)/jr-r, (3dVc, 
coils 

where J,(r,) are the current densities in the coils at location rc and the integral is 
taken over the coil volumes dV, at rc. Equations (1) and (2) are equivalent to 

B’“” = V@‘“” > 

where the magnetic potential function Gvac satisfies 

(4) 

v2c$= = 0. (5) 

While the latter representation has the desirable property of expressing the 
magnetic field in terms of a single scalar function, from a numerical standpoint 
there are advantages to using the Biot-Savart formulation: Assuming that Laplace’s 
equation is solved for Qvac on a discrete grid, it becomes necessary to interpolate to 
obtain Qvac or B’“” at arbitrary locations. Also, the magnetic field must be obtained 
by differentiating Qvac, with an associated loss of numerical accuracy. On the other 
hand, the Biot-Savart law yields B’“” directly at arbitrary locations in the plasma 
region. Here B’“” is obtained by integration, rather than differentiation. We use the 
Biot-Savart law to evaluate the vacuum magnetic field due to external conductors. 
Thus the three-dimensional vacuum fields are not known merely on a finite dif- 
ference grid, they are represented continuously. Consequently, the integration per- 
formed to obtain the Poincare plots does not require interpolation. 

The external conductors are represented by filaments, which we take to be either 
circles or closed polygons. The polygons need not be planar. For circular coils the 
fields are given in terms of complete elliptic integrals (which is a more efficient 
method than a polygonal representation); while for polygonal current con- 
figurations having specified number, order, and location of vertices, the magnetic 
field is also calculated in closed form [23]. Circular filaments are typically used to 
represent the coils of the poloidal field coil system (PFCS) and the toroidal field 
coils (if present), while closed polygons are used to describe helical field coils and 
other noncircular coils. For good numerical accuracy, up to 200 segments are used 
in each closed polygon to represent a helical field coil. 
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1 FILAMENT 6 FILAMENTS 

FIG. 1. 1 Bvac 1 contours and magnetic tield line Poincarb plots of ATF for two toroidal planes 
separated by one-half tield period for helical coils modeled by a single filament and six distributed 
lilaments, respectively. 

Distributed coil currents corresponding to the finite cross-sectional areas of each 
coil, are represented by specifying a number of distinct filaments within the coil 
cross-section. Such calculations are necessary to accurately determine the magnetic 
field close to the coils, but are not generally required in equilibrium and stability 
calculations. This is illustrated in Fig. 1, which shows the (B’““1 contours and 
magnetic field line Poincare plots in ATF for two toroidal positions separated by 
one-half field period. On the left, the helical field coils are each represented by a 
single filament, while six filaments are used in the figures on the right. It is seen that 
away from the coils, in the region of Poincare plots where the plasma is expected to 
be contained, neither the field lines nor the IB’““) contours is sensitive to the dif- 
ference in representation. Only in the vicinity of the coils is the difference noticeable. 

The use of the calculated vacuum magnetic field information in the MHD 
equilibrium and stability average method calculations will be described in Section 3. 

3. AVERAGE METHOD EQUILIBRIUM CALCULATIONS 

In this section, we describe the average method equilibrium calculations using 
RSTEQ, a classical stellarator expansion code, and NAV, an average method code 
in vacuum flux coordinates. 

Many of the numerical details of RSTEQ are described elsewhere [18] for a 
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tokamak version. The present discussion will focus on issues of importance in 
stellarator calculations. The equations solved [in toroidal (R, 4, Z) coordinates] 
are those of the Greene and Johnson stellarator expansion [5, 131, 

a 1 a+ a’$ 
RZiRR+dZ2- 

-=A*$= -R2 $+Ff’)$+A*$‘“‘, (6) 

where $ is the averaged poloidal flux function, (P) is the averaged pressure, 1F 
R[* (B), (B) is the averaged magnetic field, and P and $“” are defined below. 
The notation ( ) denotes the average taken over a field period of the geometric 
toroidal angle. Equation (6) is solved numerically using as input the vacuum 
magnetic field data, F*(R, Z) and $‘“‘(R, Z), and a (P($) ) profile. The averaged 
equilibrium flux is then calculated by requiring either zero toroidal current on each 
flux surface, 

f (F+ {F*}) = -y (R2), (7) 

where { } denotes average over a II/ = const surface, or by requiring strict flux con- 
servation 

t ($) = t ‘““(I)). (8) 

For flux-conserving equilibria, the solution procedure is a straightforward 
modification of that described in Ref. [18] for the tokamak case. Because of the 
interest in, and relevance of, zero net current stellarator operation, we consider here 
the solution of Eqs. (6) and (7), and refer to the previous paper for the solution of 
the flux-conserving case. 

To utilize the calculated vacuum field information in the average method 
calculations, it is necessary to perform averages over the toroidal angle 4 (at fixed 
R, Z) of several quantities that appear as quadratic forms of the vacuum fields. 
Because it is not possible to average toroidally “through” the physical location of a 
coil, the domain of this average method is restricted to a region inside the projec- 
tion of the coils onto a poloidal plane. This constraint provides one of the 
motivations leading to the development of the average method in magnetic coor- 
dinates: to increase the region of solution by following the 3-D excursions of the 
magnetic field lines in performing “toroidal” averages. This generalized average 
method will be described below, but we now treat the Greene and Johnson 
stellarator expansion. 

Frequently, vacuum field configurations are dominated by a small number of dis- 
crete helical components. For this reason, Fourier decomposition in toroidal angle 
provides an efficient representation of the vacuum field: in toroidal (R, 4, Z) coor- 
dinates 

Bvac(R, 4, Z) = B,(R, Z) + f (B;(R, Z) cos mj + B;(R, Z) sin nb). (9) 
n=1 
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In practice the infinite summation in Eq. (9) can be accurately approximated with 
only a few harmonics. The projection of these harmonics at specified (R, Z) is given 
by toroidal integration of the vacuum field over a field period. The quantities 
required for equilibrium and stability studies are the helical curvature 

F*(R, Z) = $; c (IB;12+IBS,12), (10) 
n>O 

and the averaged vacuum flux function 

JI’““(R, Z) = $o(R, Z) + $*(R, Z), 

where 

(11) 

(12) 

is the averaged value of the helical contribution, F, = RB,, and tie is the axisym- 
metric contribution to the poloidal flux which satisfies 

A*tio = 0, (13) 

subject to the boundary condition 

Bo=$‘,$,xJ, (14) 

at the edge of the computational domain. 
It is apparent in Eq. (9), and therefore in the subsequent equations, that the com- 

putational domain must not intersect the projection of the coils onto the poloidal 
plane. Within this constraint, however, it is desirable to obtain the averaged 
vacuum field information over as large a region as possible. The helical quantities 
(n # 0) in Eqs. (lo), (12) can be evaluated at any location not intersecting the pro- 
jection of the coils, but the average vacuum poloidal flux function t,Qo must be 
obtained by solving Laplace’s equation (13) in some closed region (interior to the 
coil projection onto a poloidal plane) with the boundary condition given in 
Eq. (14). More specifically, there are contributions to $. from the PFCS and from 
the helical coils. The contribution from circular filamentary PF coils [and toroidal 
field (TF) coils, if present] can be evaluated at any location not on one of the coils 
in closed form using elliptic integrals, 

(15) 

where 

%FR 
k2= (RPF+R)2+(Z-ZpF)2’ (16) 
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with IPF, RPF, and Z,,r being the current, major radius, and height of the PF coil, 
respectively. It is the remaining contribution $OHe, from the helical coils that must be 
evaluated using Eq. (13). In this case the boundary condition of Eq. (14) includes 
only B,,, the contribution of the helical coils to the average field B,. Originally, we 
employed a rectangular calculation region, but to increase the region size we have 
subsequently developed a circular region solver, as well. Figure 2 compares the use 
of these two solvers in application to the ATF coil configuration. The projection of 
the ATF helical field coils defines a circular region, so that the solver for circular 
regions provides vacuum information over a greater area than does the square 
region solver. This is illustrated both by the greater number of flux surfaces 
enclosed and by the larger range of vacuum flux and rotational transform encom- 
passed (Fig. 2 lower right). 

CALCULATION 

FIG. 2. Magnetic field line Poincark plot of a toroidal plane of ATF extends outside rectangular 
calculation region, but is contained in circular region. The edge rotational transform using the rec- 
tangular region (left) is less than that of circular region (right). 
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FIG. 3. $,, contours using a constant vertical tield (left) and poloidal field coils (right) for ATF. 

The sensitivity of ij0 to the assumed vertical field is illustrated in Fig. 3 for the 
ATF coil conliguration. The contours resulting from the assumption of a constant 
vertical field are significantly different from those obtained when a comparable ver- 
tical field is generated using actural PF coils, thus stressing the need for careful 
representation of the vacuum field, particularly for design work. The PF coils 
supply not only “vertical field” but also other moments that can be used to shape 
the plasma [ 141. 

In the way the stellarator expansion has been carried out, the properties of the 
averaged and the pre-averaged fields should agree up to 6* terms. This agreement is 
illustrated in Fig. 4 in which both the rotational transform and the magnetic well 
are plotted, as functions of the average minor radius, for the original and the 
averaged vacuum fields of ATF. For ATF 6 N 0.32, which is consistent with the dis- 
crepancies, which are of the order of 10%. 

The averaged vacuum information is provided, for use in the calculation of 
stellarator expansion equilibrium and stability, by specification of the values on a 
rectangular grid. All quantities are calculated directly at the grid points except for 
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FIG. 4. Rotational transform and magnetic well as functions of average minor radius calculated from 
ATFs vacuum field lines and its averaged vacuum Jl,, contours. 
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ti oHe,, which is determined by interpolating the solution of Eqs. (13) and (14) 
obtained as described above. The equilibrium calculations also proceed on a rec- 
tangular grid, but the number of grid points and the spatial extent of the grid may 
be chosen differently from the grid for the averaged vacuum quantities. The mapp- 
ing of the vacuum quantities onto the equilibrium grid is carried out using bicubic 
spline interpolation. To represent the vacuum accurately in the subsequent 
equilibrium and stability calculations, it is necessary to have a sufficiently line 
vacuum grid that the bicubic spline lit will be adequate. It has been found that for 
vacuum grids of 40 x 40 points or finer (in the R, 2 plane), the equilibrium and 
stability results become independent of the vacuum grid size. Typically, vacuum 
grid sizes of 100 x 100 points are used in our stellarator expansion calculations. The 
vacuum averaging calculations for this classical average method are carried out in 
the computer code AVAC. 

Equation (6) is solved in RSTEQ on a rectangular mesh interior to a chosen 
(nonrectangular) boundary. This boundary is taken to be a flux surface of the 
averaged vacuum magnetic field, a surface of constant $““. Normally, the boun- 
dary surface is chosen to be as large as possible while remaining a “good” closed 
surface and containing only such surfaces. In practice, we consider a flux surface to 
be “good” if in a Poincare plot the field line appears to describe a surface with 
toroidal topology. This excludes braided surfaces and stochastic regions. 
Numerically, the boundary surface is defined by obtaining a cubic spline lit to Z as 
a function of R through an array of boundary points. These boundary points of 
constant @‘“” are determined from the two-dimensional vacuum array using bicubic 
spline interpolation. Normally we assume the averaged configuration be updown 
symmetric. With this constraint the equilibrium is solved only in the upper 
half-plane. For most configurations, it is possible to define the boundary as a 
single-valued function Z(R). For special cases, such as bean shaped plasmas, it is 
necessary to segment the multiple-valued boundary function into single-valued 
pieces, but these refinements will not be discussed here. It is also worth noting that 
there are provisions in RSTEQ for considering analytic models of the vacuum fields 
(such as a Bessel function model) and also analytic forms for the boundary (such as 
circular, elliptical, D-shaped, square, bean-shaped, etc.). 

Given the boundary specification, Eq. (6) is solved for $ in the interior subject to 
the conditions that the boundary is a flux surface of the averaged poloidal flux, 
$ = 0, and that the averaged pressure goes to zero at at the boundary, (P) = 0. 
The latter condition is satisfied whenever the former is, simple by defining the 
(P(e) ) profile to be zero at II/ = 0. To maintain the boundary condition 1+5 = 0, the 
method of ghost points is used. The ghost points correspond to the points of the 
rectangular equilibrium coordinate grid that are adjacent to, but outside, the 
plasma boundary. The boundary value of $ = 0 is maintained by extrapolating the 
interior values of $, using two adjacent interior points in each direction, 
quadratically to the ghost points with the assumption that II/ passes through zero at 
the boundary. The solution interior to the boundary is determined iteratively by 
using the method of successive overrelaxation (SOR) with the ghost points 
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providing the numerical boundary for this procedure. Because Eq. (6) is nonlinear 
and must be solved iteratively, it is possible to update the ghost point values 
periodically during the convergence process. 

After solution of Eq. (6), a flux surface analysis of the equilibrium is carried out, 
again using bicubic splines to determine the points along the constant+ surfaces. 
The surface averaged quantities are obtained using the expression 

(17) 

and carrying out the integration over contours of constant $ using the trapezoidal 
rule. This information is then used to solve the ordinary differential equation, 
Eq. (7), for the F(+) required to give zero net current within each surface. If a flux 
conserving equilibrium is desired, a procedure similar to that described in Ref. [ 181 
is followed to determine the F($) required to satisfy Eq. (8). Because this new value 
of F is not, in general, equal to that which was used to solve the two-dimensional 
equilibrium, Eq. (6), it is necessary to iterate the solution of Eqs. (6) and (7) until F 
converges and the zero net current condition is satisfied. 

It is appropriate at this point to discuss the advantages and limitations of a fixed 
boundary approach. The principal advantage is that of control. By specifying the 
desired shape of the plasma directly, it becomes unnecessary to iterate with coil 
currents or fluxes on the edges of the computational region to achieve that shape. 
With this additional degree of control, it is possible to consider the properties of a 
wide range of cases very quickly. The limitations of the fixed boundary approach 
are essentially two. First, the plasma boundary for the calculation of a given 
equilibrium is taken to be one of the vacuum surfaces. However, the presence of 
small plasma currents slightly distorts this surface. For plasmas characterized by 
small values of the pressure gradient near the outer boudary, this distorsion is very 
small, a few percent of the minor plasma radius, at most. The second limitation 
relates to stability calculations, in that it is not possible to calculate the free boun- 
dary stability of low n modes from a fixed boundary equilibrium. Fixed boundary 
instabilities can be calculated using, for example, a conducting wall boundary con- 
dition at the plasma boundary, but there is no vacuum region in the fixed boundary 
calculation. We address these limitations by also using the free boundary stellarator 
expansion PEST equilibrium code [ll, 12,171, so that together, the control and 
convenience of RSTEQ and the free boundary capabilities of PEST provide a com- 
prehensive approach to average method calculations. Extensive comparison of 
equilibrium and stability calculations [3, 13, 15, 211 using these and other codes 
[ 14, 11, 12, 161 has provided a coherent picture of the equilibrium and stability of 
torsatrons, with good agreement between the fixed boundary average method 
calculations and other methods for a wide range of cases. 

It is important, both for the study of equilibrium properties and for stability 
calculations, to have an accurated numerical representation of the equilibrium, both 
in terms of the two-dimensional rectangular grid and in the number and spacing of 
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the flux surface coordinates. For example, the fi limit of RSTEQ to achieve 
numerical convergence increases significantly, more than doubling in some cases, as 
the grid is made finer. We generally find that, for equal vertical and horizontal grid 
spacing, equilibrium coordinate grids having 60 or more points horizontally are 
adequate, giving subsequent equilibrium and stability results that are insensitive to 
grid spacing. Typically, 100 horizontal points are used in our equilibrium 
calculations. Similar considerations of the flux coordinate grid show that 60 sur- 
faces provide an adequate representation. Our calculations are generally carried out 
using 81 flux surfaces, equally spaced in $. 

Many results obtained using the code RSTEQ have been published [ 13, 14, 211, 
including comparisons with those of other equilibrium calculations. We restrict the 
RSTEQ results presented here to a comparison with those obtained from the 
generalized average method equilibrium calculations. Before presenting this com- 
parison, we discuss the generalized average method equilibrium as solved in the 
computer code NAV. 

A limitation of the classical average method is that it is not applicable to con- 
figurations with magnetic axes having large helical motions. This restriction arises 
because the method uses a perturbation expansion about a cylindrical state. 
Koniges and Johnson have developed a method in which the helical swing of the 
magnetic axis and the minor radius are assumed to be of the same order [24]. An 
alternate approach for studying helical-axis (and planar-axis) systems is to average 
toroidally in a system of vacuum flux coordinates [9, 10, 151. In the flux coor- 
dinates, the vacuum fields are axisymmetric and are thus retained to all orders. In 
contrast, the classical average method retains terms to order 6* in the vacuum. An 
additional benefit of averaging in flux coordinates is that it circumvents the 
problem in the classical average method associated with the domain over which 
Laplace’s equation (Eq. (13)] is solved. In the flux coordinate average method the 
domain of solution encompasses the entire region of good flux surfaces. Because the 
vacuum is retained to all orders, there exists an exact transformation between the 
vacuum flux coordinates and real space. Thus, after the average equilibrium 
problem in the vacuum flux coordinates is solved, the solution may be easily projec- 
ted into real space. In the classical average method, the projection of the 
equilibrium solution into real space is only accurate to 0(6*) and problems occur in 
mapping outside the region over which the average vacuum problem is solved. 

The particular vacuum flux coordinates employed are those described by Boozer 
[25]. The vacuum magnetic field may be written as 

B’“’ = p”Vp, x V(0, - t 4,) (18) 

or as 

B'""=F,V&. (19) 

Here pz is the poloidal flux and pU acts as a radial coordinate. The magnetostatic 
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potential 4, is the toroidal coordinate and changes by 2n in one toroidal circuit for 
an appropriate choice of the constant F,. The poloidal coordinate 0, changes by 27~ 
in one poloidal circuit. The (p,, 8,, 4,) coordinates have the inverse Jacobian 

(20) 

However, they only have to be calculated once for each vacuum configuration. 
Therefore the overhead for doing this in the equilibrium calculation is small. The 
penalty for using such a flux coordinate system is that the metric elements must be 
calculated. Boozer [25] and Kuo-Petravic et al. [26], have described a practical 
method for calculating the necessary transformations and metric elements for the 
(p,, 8,, 4,) coordinate system. From the flux surfaces described by a given coil set, 
the coordinates are calculated by Fourier analyzing along field lines, which results 
in Fourier expansions for the cylindrical coordinates R, Z, c = -I+& Thus, for exam- 
ple, 

R(P,, Rn 4,) = c &,,n(~,) cos(me, + 4,). 
m,n 

(21) 

Only cosine terms need to be retained in this expansion for stellarators that have 
the property that under the transformations R -+ R, Z + -Z, $, -+ --do, the sur- 
faces are unchanged. For the same reason Z and [ may be expressed as sine series. 
Having calculated R, Z, [, and D, in the (p,, 8,, 4,) coordinates, the necessary 
metric elements may be calculated. Various inter-relationships show that g,,, gpO, 
and g,, are the only independent metric elements. In practice, using the (p,, 8,, 4”) 
coordinates directly leads to singularities in some of the dependent variables at 
pv = 0. Such singularities are avoided by resealing by appropriate powers of p”. The 
necessary resealings are Ae = pVAe, a, = Ae/pV, P = PO Ye9 i,e = gpelPuy 
gee = pigee, gee = gee/p:, and 8, = p”D,. These resealings lead to a system of coor- 
dinates that is very similar to ordinary cylindrical coordinates. This method of 
calculating the coordinate system from a given coil configuration is in accord with 
our philosophy of trying to match to the vacuum information as accurately as 
possible. 

This generalized average method has been discussed elsewhere [IS], so here we 
focus on those details salient to the numerical method and its implementation. In 
addition to describing the equations and numerical method, details of convergence 
tests and comparison of results using the flux coordinate average method with the 
classical average method and with a 3-D equilibrium calculation will also be given. 

The ordering assumptions for the flux coordinate average method are the same as 
those for the classical average method; namely that the helical fields are of O(6) 
( + 1) relative to the dominant toroidal fields and that the inverse aspect ratio (E) 
satisfies E w d2 w /I. In addition to these orderings, it is also assumed that the 
equilibrium Shafranov shift is toroidally dominated. 
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Defining the notation 

(22) 

where the integral is evaluated at constant p”, 13, we may write any quantity in 
terms of its averaged and varying parts in #,, 

A= (A), +A”. (23) 

Then from (V . B), = 0 an average flux function x may be defined by 

and (24) 

In averaging the product of two terms, there is a quasi-linear contribution to the 
product: 

CAB), = (A >, (B), + (~%o. (25) 

As discussed in Ref. [is], by averaging in the vacuum flux coordinate system, all 
such quasilinear terms that occur in the averaged equilibrium equations are of high 
order and need not be retained. In the classical average method, some low order 
quasilinear terms occur, and they must be explicitly retained. The necessity to retain 
such quasilinear terms in the classical average method arises because the toroidal 
averages are taken along paths of constant R, 2 that do not follow the vacuum flux 
surfaces. In contrast, the toroidal averages in the flux coordinate average method 
[Eq. (22)] are at constant pU, 8, and do follow the flux surfaces. In summary, 
therefore, in deriving the equilibrium equations in the vacuum flux coordinates it 
may be assumed to leading order that the average of a product is the product of the 
averages. 

To leading order, the toroidally averaged radial component of the equilibrium 
equation (F = J x B - VP = 0) is 

(26) 

where F= (B,), and (B,),, (B,), may be written in terms of x and the metric 
elements in leading order as 

(B ) =~Dvgppkk~(, P v 
P” de, 

(27) 

581/66/Z-12 
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and 

(B ) =(D”gpe)“dx-(D g ) i%+<D g ) e ” 
P” 80” " 00 "ap, u er v (28) 

The leading order poloidal and toroidal components of the equilibrium equation 
are 

and 

-ax@ aoF=, ------ 1 
ae, ah ap, 80, 

(29) 

(30) 

respectively. Equation (30) shows that F is a function of x and, similarly, the 
equilibrium relation (B), . V(P), = 0 shows that (P), is a function of 1 only. 
Equations (26) and (29) may be combined to yield a Grad-Shafranov-type 
equation 

‘” ,,“(,pp~“~+(,pe,,~)+~~((g”e)“~+~~) 
P” ap” ( 

+f $~(P:i(YPP)“)+~“~(p”I(gpe)“) 
-[ ” ” ” ” 1 

(31) 

The equivalence of this equation to that derived in the classical average method 
[Eq. (6)] may be demonstrated [ 151. The Grad-Shafranov equation [Eq. (31)] 
represents the leading order terms of the toroidally averaged equilibrium equation. 
In addition, the mathematical elegance of deriving the average equations in the 
vacuum flux coordinates has also facilitated the derivation of a Poisson-type 
equation for the leading order toroidally varying components of the equilibrium - 
equation (VP = J x B). These toroidally varying corrections to the equilibrium are 
of higher order than the average terms, but can be important in some cases, as the 
grid is made finer. The numerical solution for the toroidally varying corrections has 
been described in Ref. [15], and these terms will not be considered any further in 
this paper. 

Equation (31) could be solved by a relaxation method similar to that used for the 
Grad-Shafranov equation derived in the classical average method [Eq. (6)]. A dif- 



STELLARATOR EXPANSION METHODS 425 

ferent approach, however, involving an energy minimization technique similar to 
that used in the Chodura-Schhiter code [2] is used to solve Eq. (31). This method 
is probably not as efficient computationally but has the advantages of being 
relatively simple to implement and being flux conserving in the infinite grid limit. 

Solving Eq. (31) is of course equivalent to solving the three components of the 
equilibrium equation [Eqs. (26), (29), and (30)]. To achieve this, an artificial 
velocity (v) is introduced. It is assumed that v is a function of p”, 8, and artificial 
time (t) only and that v * Vd, = 0; the choice of v will be described below. Using this 
velocity, the average pressure is convected, 

am at +v*V(P), =o, 

and the average B is advanced in a flux conserving manner (i.e., the t profile as a 
function toroidal flux is preserved) 

i(E).=($ Vx(vxB))~=++,vx(;)j. (33) 

Using Eqs. (32) and (33) we may take the variation of the potential energy in the 
system. To the same order as the equilibrium expansion we obtain 

f=-g,(f-P)dV 

=i((B)“.~(~),-(~)“~)de”d~” 
F =- v. - i(> Do u 

de, dp,, (34) 

where the components of (F/D,)” are specified in Eqs. (26), (29), and (30). If we 
choose v such that the final integral in Eq. (34) is positive definite then we will 
minimize the potential energy, and the final state will be (FJD,), = 0. The 
obvious choice is v = (F/D,),; however, as described in Ref. [2] a more efficient 
scheme is 

+v IF/DuI"+l v,j 
mm' 

Here, the superscripts denote iteration level, the overhead bar denotes volume 
average, and for optimal convergence the constant v is chosen just less than unity. 
This iteration scheme [Eq. (35)] is known as a conjugate gradient scheme. So in 
summary, Eqs. (32), (33) and (35) constitute an iteration scheme that yields 
solutions to (FJD,), = (Fe/D,), =0 [Eqs. (26) and (29)]. To solve the 
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equilibrium problem [Eq. (31)] we must also satisfy (F,/D,), = 0 or equivalently 
have F as a function of x in the final state. From Eqs. (26) and (29) we have, 

The latter bracket is zero because (P), is a function of x and therefore, in the final 
state, F is also a function of x. Thus the solution of Eq. (30) is a consistency 
requirement on the solutions of Eqs. (30) and (29). 

The above iteration scheme is flux conserving. An alternate constraint is that of 
zero net toroidal current. An additional outer iteration is added to compute such 
equilibria. This iteration proceeds in the following manner. First, a flux conserving 
equilibrium is obtained and the net toroidal current (IT) is computed by flux sur- 
face averaging around the contours of constant x. 

The equation 

IT =Vd, *Vx Oh >,, (37) 

is then solved by noting that the gauge invariance allows us to specify 
(B?/D,), = 0. In leading order the expansion, Eq. (37) may then be written as 

The iteration proceeds by solving this equation for x1, subtracting x, from x, and 
solving the equilibrium problem again. This outer iteration is repeated until con- 
vergence is obtained. 

Equation (33) may be reduced to an equation for x, 

and an equation for the toroidal field 

If (P), is chosen to be a function of the vacuum x as an initial condition, then 
comparing Eqs. (32) and (39) shows that this functional form is preserved for all 
time. For all the results presented in this paper (P), cc x2 is used. The equations 
numerically solved to time advance the average magnetic field are (39) and (40). 
The radial and poloidal forces [Eqs. (26) and (29)] are then computed with (P), 
a given function of x, and v is related to these forces by Eq. (35). Centered finite dif- 
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ferences are used in the radial direction and a Fourier series description is used in 
the poloidal angle (0,). Thus for example 

X(P”, e,, 1) = 1 XAP”, t) cos me”. (41) 
t?l>O 

The symmetries inherent in the stellarators studied permit us to retain only cosine 
terms in Eq. (41). Similarly the other dependent variables (B,/D,),, F, and up are 
cosine phased and ve is sine phased. The temporal differencing is a simple first-order 
explicit scheme. Such a scheme minimizes the storages in the code but there is a 
penalty in terms of the admissible time-step sizes. Equation (38), which is solved in 
the zero net current iteration, is reduced by the 8, Fourier expansion to a set of 
coupled second-order ODES in p,. Taking finite differences in pv then results in a 
block tridiagonal system which is solved in a standard manner [27]. 

For the remainder of this section, results will be given for convergence tests of the 
code NAV, which implements the above algorithms to solve for flux coordinate 
average method equilibria. In particular, convergence tests will be described for a 

VACUUM 

o.4- 

&=3.5% (NEAR) &=3.5X (NAVI 

R (ml 

FIG. 5. Equilibrium flux surfaces from NAV, the flux coordinate average method, and NEAR, a fully 
3-D method, for a heliac with toroidally dominated equilibrium shift. Three toroidal planes are shown 
with the vacuum for reference. 
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FIG. 6. Equilibrium axis shift of toroidally dominated heliac as a function of number of radial mesh 
points in NAV for PO = 4%. 

plasma aspect ratio 8, four field period heliac with an i profile varying between 0.71 
at the magnetic axis, and 0.62 at the edge. This case illustrates the ability of the flux 
coordinate average method to study helical axis equilibria. Figure 5 compares the 
equilibrium flux surfaces (at &, = 3.5%) from NAV with a fully 3-D solution from 
the NEAR code [3]. For this heliac the vacuum flux surfaces are also shown for 
reference. The relatively low aspect ratio and low f per field period mean that the 
equilibrium shift is toroidally dominated for this heliac, and thus the average 
method is applicable and in good agreement with the 3-D equilibrium solution. The 
numerical convergence with respect to the radial finite differencing and the poloidal 
Fourier expansion have been examined. Figure 6 shows how the equilibrium shift 
(at &, = 4%) varies with the number of radial mesh points for the heliac shown in 
Fig. 5. Here, the equilibrium shift (6,) is defined as the shift in the vacuum flux 
coordinate (p,) normalized to the flux coordinate minor radius. The shift is well 
converged at 30 mesh points. Applying the same convergence test to the poloidal 
Fourier series representation shows 6, is converged to within 0.1% when 4 terms 
are retained in the Fourier series. An alternative measure of the convergence in the 
poloidal representation comes from examining the magnetic energy spectrum, 

EYm = (42) 

Figure 7 compares the E, spectrum, for the same case as Fig. 5, with 8 and 4 
poloidal modes. This diagnostic of the convergence shows that 4 poloidal modes are 
sufficient for well converged solutions. In addition to studying the spatial differenc- 
ing convergence, we must also study the temporal differencing. In all cases studied 
it has been found that, for the explicit scheme used here, the restriction placed on 
the timestep by numerical stability is sufficient to ensure temporally converged 
solutions. Finally, and most importantly, the convergence of the algorithm to a 
solution of the equilibrium equations must be checked. The volume average of the 
force (1 F/D, ( ) is a good measure of the convergence of the equilibrium. Typically 
during an equilibrium calculation the average force is decreased by 7 orders of 
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FIG. 7. Difference between E, spectrum of toroidally dominated heliac (j& =4%) for 4 and 8 
poloidal modes. 

magnitude. Another sensitive diagnostic of the convergence is the variation of F on 
a constant x surface 

(43) 

Here the integrals are around contours of constant x, and F*v is the average value 
of F on that surface. Calculations of [F] as a function of normalized average radius 
(?) for the same case as Fig. 5 with 30 radial mesh points, four modes, and /I0 = 5% 
shows the equilibrium to be well converged, to within three parts in 104. 

Next, comparisons will be made between the two equilibrium average method 
codes described in this paper (RSTEQ, NAV) and a fully 3-D code NEAR [3]. 
Many such comparisons have been made elsewhere [ 13, 15,211, and only a very 
limited number of examples will be given here for configurations other than ATF. 
In particular, comparisons will be presented for CLEO [28] which is an I= 3, 
7-field period stellarator, and for a 24-field period I = 2 torsatron. This torsatron is 
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in fact derived from the 12-field period ATF configuration by doubling the number 
of field periods and the aspects ratio while holding all other parameters constant. 

Figure 8 shows a comparison of the classical and flux coordinate average 
methods, for a fiO = 0.4% flux conserving CLEO equilibrium calculation. The close 
parallel between the two average methods is evident from this figure. It should be 

VACUUM-REAL SPACE 

REAL SPACE FLUX COORDINATE 
AVERAGE METHOD AVERAGE METHOD 

AVERAGE 
VACUUM 

AVERAGE 
EQUILIBRIUM 

1 REAL SPACE 
EQUILIBRIUM 

-L--- 
FIG. 8. A comparison of the classical and flux coordinate average methods for a PO = 0.4% flux con- 

serving CLEO equilibrium calculation. 
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- RSTEO 
---- NAV 
--NEAR 

FIG. 9. The equilibrium shift as a function of /I,, for flux conserving CLEO equilibria from the two 
average method codes (RSTEQ, NAV) and the 3-D NEAR code. 

noted that, because of differences in coordinates, the equilibrium solutions can only 
be compared when they are projected into real space. The equilibrium shifts (6) for 
flux conserving CLEO equilibria from the two average method codes (RSTE- 
Q, NAV) are compared with the 3-D NEAR code result, in Fig. 9. Here, 6 is 
defined as the shift in real space normalized to the average minor radius. The 
magnetic well is a sensitive diagnostic of the surface shape. Figure 10 compares the 
magnetic well profiles among the three equilibrium codes for flux-conserving CLEO 
equilibria at /I0 = 0.12%. Both Figs. 9 and 10 show very good agreement among the 
equilibrium codes. 

Some comparisons between zero net current equilibria will now be presented for 
the 24-field period torsatron. Figure 11 shows a comparison of the flux surfaces (at 
/I0 = 4%) computed with the three equilibrium codes for this case. The RSTEQ 
equilibria appear to have a smaller plasma volume. This arises for the reasons dis- 
cussed, namely that the equilibrium field lines cannot be followed outside the 
domain of the average equilibrium solution. Such problems are particularly 
pronounced in cases where the flux surfaces are very noncircular. For CLEO, where 
the flux surfaces are more nearly circular, very little plasma volume is lost in pro- 
jecting the average solution into real space. All such problems are circumvented by 

-RSTEO 
----_ pJA” 7 

i -‘nb --NEAR 1 

FIG. 10. The magnetic well profiles as a function of f for flux-conserving CLEO equilibria at 
p. =0.12%. 
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FIG. 11. Zero net current equilibrium flux surfaces for the 24-field period torsatron at jO = 4% com- 
puted with three codes. Three toroidal planes are shown. 
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FIG. 12. The 1 protiles from the three equilibrium codes for the 24 field period torsatron at & = 6%. 
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the flux coordinate average method where the vacuum information is retained 
exactly. 

The constraint of zero net current causes the I profile to deform relative to its 
vacuum shape. Figure 12 shows a comparison of the 1 profiles among the three 
equilibrium codes for the 24 field torsatron at j$, = 6%; also shown for reference is 
the vacuum I profile. The v’ profiles and the equilibrium shifts as a function of /I0 
also show good agreement for this torsatron. In contrast to RSTEQ, both the flux 
coordinate average method code (NAV) and the 3-D code NEAR have con- 
vergence problems for zero net current cases when /&, 2 10%. The two codes use 
the same iteration technique to calculate zero net current equilibria and this 
method fails to converge properly when the pressure-induced currents become large 
at high 1. 

4. STABILITY CALCULATIONS 

The set of equations used for stability calculations is obtained by applying the 
stellarator expansion [S] to the full set of MHD equations in toroidal geometry. 
The basic expansion parameter 6 is of the order of the ratio of the helically varying 
magnetic field to the average toroidal field. The different operators and fields are 
also expanded in /I and l/N, where /I is the plasma beta and N the number of field 
periods. Both parameters are taken to be order 6*. By averaging over the fast 
variation in the toroidal angle, the resulting equilibrium is two-dimensional, sim- 
plifying the stability calculations. The derivation of these equations is similar to the 
derivation of the reduced set of MHD equations [a] for stellarators but without 
expansion in the inverse aspect ratio. The assumptions of moderate aspect ratio 
(s-6 or higher) is however needed to close the (fourth order in 6) averaged 
equations. The set of equations is formally the same as the set derived by 
Kovrizhnykh and Shchepetov [7], retaining only terms up to order J4. 

For classical stellarator expansion stability calculations using the MHD 
equations as embodied in the FAR [20] code it is necessary to map the equilibrium 
solution into a generalized magnetic coordinate grid. The FAR code uses 
equilibrium flux coordinates [ 17, 19,291. The various quantities appearing in FAR 
must be represented as Fourier series in the coordinates 8 (generalized poloidal 
angle) and < (geometric toroidal angle) with coefficients that are functions of p (a 
flux surface coordinate that is thought of as a generalized radius): 

where I is the time. Because of up-down symmetry, each quantity may be represen- 
ted either as a cosine series or a sine series. Because of the axisymmetry of the 
averaged equilibrium, the equilibrium quantities to be mapped are independent of 
the toroidal angle { as well as the time t, 

Z(p, 8) = C Z,(p) sin m@. (45) 
m 
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Surface quantities, such as & and (P,, ), are represented simply as functions of p. 
The mapping is carried out by defining each surface using bicubic spline inter- 
polation, and then using the Jacobian 

D = 1/R2, 

to determine the p, 0 coordinates according to 

(46) 

and (47) 

The expression for p involves volume integration interior to the average magnetic 
surface given by $, while that for 0 involves integration along the given surface 
(constant $ and p). With this normalization the coordinates satisfy 0 < p < 1 and 
0 < 8 < 2~. The result of Eq. (47) is a (p, 0) poloidal magnetic coordinate grid for 
the solution of the 2-D stellarator expansion equilibrium. Using bicubic splines it is 
then possible to evaluate the necessary functions on the (p, 0) grid points, which are 
then projected into the Fourier representation of FAR in a straightforward manner. 

The dynamical equations are then solved using a modified version of the 
initial-value code FAR which incorporates the stellarator expansion terms from the 
helical averaging. The equilibrium and the equilibrium flux coordinate system used 
in FAR are calculated using the code RSTEQ described above. The equations are 
written in terms of potential functions for the magnetic field and fluid velocity, and, 
in dimensionless form, they are 

a$ aa 
at=-Tg - vPBu + veBP + qJ, - E,, 

-= --l&-&BP+vPB~+qJe, ax 
at Paa 
i3a 
ap- - - veBc + viBe + rjJ,, 

au@ a 
- = Yjf (VW - dU*) + $ (lPUP -VW*) at 

+ ; (JeB’ - fBe) + $ (JeBp - JPBe) 1 , (51) 
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. (53) 

Here, the magnetic field and fluid velocity are given by 

and 

(54) 

v=R2[V@xV(p/i)+V~xV@] (55) 

while 
J=VxB,, B,, =B-V[xV$* (56) 

and 

U=R2Vxv. (57) 

In Eqs. (48-57), all lengths are normalized to a generalized minor radius a [defined 
by a2 = R, J Rp2 dV/(2n2), with the integration over the plasma volume]; the 
resistivity to q0 (its value at the magnetic axis); the time to the resistive diffusion 
time r, = a2p&,, where p0 is the vacuum magnetic permeability; the magnetic field 
to B, (the toroidal vacuum field at the plasma major radius R,); the velocity to 
a/r,, and the pressure to P,, (its equilibrium value at the magnetic axis). R is the 
major radius coordinate normalized to R,, and S= r,/rHp is the ratio of the 
resistive time to the poloidal AlfvCn time [rHp = R,(p,p,)1’2/Br~]. 

The new terms appearing in these equations in contrast to the tokamak case are 
the terms containing +* in the definition of the current, and the modification of the 
curvature terms in the momentum balance equation due to F*. 

Only linear calculations will be discussed in this paper. A linear eigenfuction with 
toroidal mode number n is expressed in the FAR code as a superposition of Fourier 
components, 

xn = c X,,(P) cos(mQ + 4 
m 

(58) 

for $, X, and P, and X, =C, X,,(p) sin(m@+n[) for A, @, and CL For a given 
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value of n, however, there are generally multiple unstable eigenfunctions that 
correspond to different radial mode numbers. 

Unless we state otherwise, the calculations shown in this paper are ideal, and 
only low toroidal mode number (n < N, where N is the number of field periods of 
the device) are studied, consistent with the average method assumptions. All the 
equilibria used in the calculations are zero net current. 

Convergence studies with respect to the number of grid points and the number of 
poloidal modes coupled by toroidicity are needed to get reliable growth rates and 
eigenfunction spectra. These studies are particularly important for calculating the 
plasma stability near the marginal stability points. 

The configurations used for convergence studies in this paper have helical coil 
pitch pc = 1.4, where pc = N/(lA,.), and where A,. = R,/a, gives the coil aspect ratio 
and I= 2. This sequence of configurations, which was described in Ref. [ 131, 
corresponds to the same pitch as ATF, varying the number of field periods and 
aspects ratio accordingly. 

The configuration N= 14 is considered because it illustrates the situation close to 
the marginal point, where the eigenfunction is strongly localized around the 
singular surface. This provides a sensitive case for demonstrating numerical con- 
vergence, because of the spatial localization. Figure 13 shows the results of a double 
convergence study for the n = 2 eigenfunction. The growth rates are plotted as 

0 5 10 15 

(Apj2 (x lo-‘1 

FIG. 13. Linear growth rates of the n = 2 mode as a function of the stability grid size for three dif- 
ferent equilibria of the N = 14 configuration with PO = 5.7%, each one corresponding to a different 
equilibrium mesh. 
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FIG. 14. Converged n=2 growth rates as a function of the equilibrium grid spacing for the same 
case as Fig. 13. 

functions of the radial grid density in the stability code for three different equilibria 
at Do = 5.7%, each one corresponding to a different sized equilibrium grid. The 
largest growth rate corresponds to an equilibrium grid of 100 horizontal points, the 
smallest has 40 points, and the intermediate one has 65 points. Five poloidal mode 
numbers are included in these calculations, and the unequal spaced radial grid in 
the stability calculation is concentrated around the singular surface of the strongly 
dominant mode (m = 3, n = 2). From the figure we conclude that, for this sensitive 
case, a radial grid with dp g 6 x 10d4 is needed to obtain a converged result. It is 
also apparent that the equilibrium grid spacing is more important in this case than 
that employed for the stability calculations. 

The converged growth rates (with respect to the stability grid) are plotted versus 
the equilibrium grid spacing in Fig. 14. The dashed line indicates the extrapolated 
value of the growth rate to an infinite number of grid points. Thus for a 100 x 100 
grid, which is our standard choice, the error is less than 10%. We emphasize that 
this result is, however, especially sensitive to the localization of the mode. The same 
study for the N = 19 configuration, with a broader eigenfunction does not show any 
noticeable change in the growth rate value. 

The configuration N= 14 becomes ideally stable at higher beta, entering the 
second stability regime. The dominant component (m = 3, n = 2) of the eigen- 
function is plotted versus p in Fig. 15 for the previously studied case (fi,, = 5.7%) 
and the case B,, = 7.9%, which is ideally marginally stable. Each point in the figure 
represents a grid point, and the results are shown in the region of the singular sur- 
face for three different grid densities. In the case with /?,, = 5.7%, as the grid is 
refined, a better definition of the peak of the eigenfunction is obtained, and the 
growth rate converges. Conversely, in the case with Do = 7.9%, the peak of the 
eigenfunction is never resolved, and the growth rate decreases strongly as the grid is 
refined. For clearly unstable modes, such as the PO = 5.7% case, the growth rate 
varies with grid spacing as y = y0 + y2(dp)’ with y,, > 0 (see, e.g., Fig. 13); while for 
marginally stable modes the scaling with grid spacing typically is observed to be 
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FIG. 15. Grid convergence studies showing the radial behavior of the dominant component (m = 3, 
n=2) for unstable (/&, = 5.7%) and marginally stable (PO =7.9%) cases corresponding to the N= 14 
configuration. 
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FIG. 16. Linear growth rate of the n = 2 mode as a function of S and grid size for the same case as 
Fig. 13. 
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Y = y. + y1 4 with y. x0. We again emphasize that the sensitivity shown here is 
observed only for localized modes near the marginal stability limit. 

For the case with PO = 5.7%, we have studied the effect of a small resistivity on 
the stability behavior. The results are shown in Fig. 16. It is apparent that the 
introduction of a small resistivity destabilizes the mode. The eigenfunction becomes 
broader than in the ideal case, and fewer grid points are needed to obtain a con- 
verged result. The figure also shows that the numerical diffusion induced by the 
finite grid is functionally equivalent to a physical resistivity. Unequally spaced 
radial grids are used in these calculations with 100, 200, and 400 grid points 
corresponding to dp = 5 x 10-3, 2.5 x 10P3, and 1.25 x 10e3, respectively, in the 
region of the singular surface. 

To illustrate the convergence studies with respect to the number of modes, we 
have chosen the configuration N = 19, whose eigenfunctions have broad spectra. 
The results we present correspond to /IO = 5.6%, and 200 equally spaced radial grid 
points. This number of grid points provides a converged result for this con- 
figuration. Figure 17 shows the convergence of the growth rate with respect to the 
number of modes included in the calculation. It is clear that 10 modes give a con- 
verged result. 

The spectrum is evaluated using the norm 

(59) 

for each Fourier component. The spectra, normalized to the dominant component, 
are plotted in Fig. 18 for calculations with differing numbers of modes. It is 
apparent that the calculation with 10 modes is converged in terms of the spectrum 
structure. 

There is only a factor of four difference between the norms of the largest Fourier 
component (m = 2, n = 2) and the second largest (m = 3, n = 2). This suggests that 
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FIG. 17. Linear growth rate of the n = 2 mode as a function of the number of poloidal components 
included in the calculation for the N= 19 configuration with B0 = 5.6%. 
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FIG. 18. Poloidal mode number spectra of @, for the same case as Fig. 17. 
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FIG. 19. Linear growth rates of the n = 2 mode as a function of g for the two most dominant 
branches. Labels indicate the dominant poloidal component of @. 
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slight changes in the equilibrium profiles can lead to changes in the growth rate and 
the m-value of the dominant harmonic. To study this, we have parametrically 
changed the / profile of the configuration to the profile one would obtain without 
introducing higher toroidal corrections (i.e., that obtained with constant F). This 
modification has not been made self consistently in the code because the 
equilibrium has not been modified, apart from changing the t-profile. The correc- 
tion to the L-profile is of the order of 5%, which leads to a modification in the 
growth rate of 20%, with the largest harmonic becoming (m = 3, n = 2) instead of 
(m=2,n=2). 

Further insight into these sensitivities can be gained by considering the effects of 
toroidal coupling upon the poloidal components. With the FAR code it is possible 
not only to determine the fastest growing eigenfunction, but also the more slowly 
growing subdominant modes [20] having higher radial mode number. The 
calculation of the second dominant mode, for the above cases involving parametric 
modification of the t-profile, gives the largest component of the second dominant 
mode to be (m = 2, n = 2) for the self-consistent case and (m = 3, n=2) for the 
modified case. To determine whether the dominant and second eigenmode branches 
cross, we have considered several intermediate t -profiles. The growth rates obtained 
are plotted in Fig. 19 versus a parameter g that varies from 0 in the case of the 
original i -profile to 1 in the case of the modified profile. The intermediate values of 
g correspond to t-profiles linearly interpolated between the two extremes. The 
labels on the curves are the largest poloidal Fourier component of the stream 

--+l 
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FIG. 20. Poloidal velocity stream function (@) as a function of radius for several g values on the first 
(upper plots) and second (lower plots) branches of Fig. 19. 
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function @, using the norm defined previously. For g = 0.3 in both eigenfunctions, 
the norms corresponding to m = 3 and m = 2 have practically the same value. What 
the figure shows is that there is no crossing and, instead, the branches 
corresponding to the dominant and subdominant modes exchange dominant 
poloidal components. This is an effect of the coupling of poloidal modes caused by 
the toroidicity. In the absence of toroidal couplings, each poloidal component 
would define a set of eigenfunctions decoupled from those of other poloidal com- 
ponents. Numerical calculations, performed without the toroidal coupling terms, 
show that each poloidal mode number generates a separate eigenmode branch that 
corresponds, qualitatively, to that obtained by joining together the points in Fig. 19 
having the same poloidal mode number. Thus, without toroidal couplings each 
poloidal mode number defines a branch, and the branches cross as the parametric 
changes alter the stability of the modes. Introducing the toroidal couplings changes 
the topology of this picture. The toroidal eigenfunction is a vector composed of dif- 
ferent poloidal components, and considering the variation of any single component 
can be misleading. This is illustrated in Fig. 20 where the eigenfunctions of the 
m = 3 and m = 2 components are plotted for three g-values for the dominant and 
subdominant branches. The ratio between the amplitudes of the m = 3 and m = 2 
poloidal components increases as a function of g in the dominant branch, and 
decreases in the subdominant branch, but the radial structure of the eigenfunction 
remains the same in both cases, with the m = 3 component having the charac- 
teristics of a global mode, while the m = 2 component is more localized. 

5. SUMMARY 

Two methods for performing stellarator expansion, or average method, MHD 
calculations have been described and compared. One method follows the classical 
stellarator expansion of Greene and Johnson [S] to calculate equilibrium and 
stability of configurations having planar magnetic axis variation at moderate and 
large aspect ratios. In the other approach the assumptions of the stellarator expan- 
sion are retained, but the averaging is performed in the magnetic coordinate system 
of the vacuum fields. This allows the treatment of helical axis systems having 
toroidally dominated shifts in addition to those configurations amenable to the 
classical stellarator expansion. Another advantage of the vacuum flux coordinate 
average method derives from the additional plasma region that is retained by 
averaging over vacuum flux surfaces, rather than geometric toroidal angle. The 
drawback of this latter method relates to the additional geometric terms that are 
required for carrying out the calculations in the generalized coordinate system. 
Both methods have been implemented using fixed conducting wall boundary con- 
ditions. 

Both approaches have been implemented to make us of realistic vacuum field 
information, derived from accurate representations of actual coil configurations. 
Calculation of the vacuum fields is carried out using the Biot-Savart formula. 
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Applications have been made to practical design problems as well as to theoretical 
studies. 

Equilibrium calculations using the two average method techniques have been 
studied [13, 15, 211 both for convergence and for comparison with each other and 
with other numerical techniques [l-4, 11, 12, 163 (in this work the 3-D NEAR 
code). For the classical stellarator expansion the numerical /I limit of zero net 
current cases is sensitive to the choice of mesh size, increasing as the mesh is 
refined. For the magnetic coordinate average method, the observed numerical j? 
limit of N 10% for zero net current cases is related to the appearance of large 
Ptirsch-Schltiter currents at high /?. As in previous work [ 13, 15, 213, excellent 
agreement between the results of the different methods was found for applications 
within their mutual domain of validity. 

Stability calculations for low n modes, using the classical stellarator expansion, 
have been studied for convergence in terms of grid size, poloidal mode truncation, 
and equilibrium grid. For localized modes, equilibrium and radial grid con- 
siderations provide the most stringent convergence considerations, while for global 
modes the poloidal component representation must be broad ( 2 10 modes). The 
effect of finite grid spacing in stability calculations is to provide a numerical 
resistivity, which decreases as the grid is refined. For parametric variations in the 
equilibrium, the growth rates of the dominant and subdominant eigenfunctions (for 
given n) are found not to cross, although the dominant poloidal components in 
each eigenmode may be exchanged. 
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